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Abstract

The continuous element method is presented in the context of the harmonic response of beam assemblies.
A general formulation is described from the displacement solution of the elementary problem. A direct
computation of elementary dynamic stiffness matrices is presented. In the present formulation, distributed
loadings are taken into account. In the case of more complex geometries for which many coupling
phenomena occur, an explicit formulation is no more conceivable. In this case, a numerical approach is
presented. This approach allows an algorithmic computation of exact dynamic stiffness matrices. This
method, called ‘‘Numerical Continuous Element’’, allows one to consider the coupled vibrations of curved
beams and those of helical beams. The validation of this numerical method is achieved by comparisons with
the harmonic response of various beams obtained by a finite element approach. Finally, a comparison
between eigenfrequencies obtained experimentally and numerically for a straight beam and a helical beam
has been made to evaluate the performances of the method.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

The two most popular computational methods used in structural dynamics are: the finite
element method (FEM) and the boundary element method (BEM). While investigating higher
frequency ranges for acoustic applications and using finite elements, structures are decomposed
into smaller and smaller elements. The mesh size is chosen so that its largest dimension does not
exceed the wavelength of the vibration. Going in this direction, when dealing with complex and
large structures, the number of elements often becomes prohibitive. The calculation of eigenvalues
in the range of medium frequency becomes cumbersome and time consuming. The BEM is
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generally used to study the acoustic radiation of structures. Green’s formula permits one to bring
the wave equation of the domain to its boundaries and the meshing of the structure concerns only
its contour.
The continuous element method (CEM) constitutes a third class of methods, which have been

the focus of attention of many researchers in Europe since 1975, particularly in aeronautical and
naval engineering. Continuous element-based computer codes were elaborated in Sweden [1],
France [2], the UK [3,4] and Germany [5]. For submarine structures, the CEM finds its
application in the acoustical frequency range. This method has given rise to active research, see
Refs. [6–8].
The CEM finds its theoretical foundations in elastodynamics. In direct line, it can be related to

the Dynamic Stiffness Method using the characteristic functions of beams ([9–11]). Elementary or
refined theories which take into account many effects (inertia, shear, warping, etc.) for beams as
well as for plates and shells can be used. In the framework of an elastodynamic theory and with a
given set of boundary conditions, it is possible, for a simple, element geometry (for example,
rectangular or triangular plate), to obtain the exact solution of the vibration problem. This
solution is not limited to lower frequency. Eigenfunctions are expressed as a combination of
exponential functions (or trigonometric and hyperbolic functions) which are capable of describing
an infinity of modes. In the case of plates, infinite series are adopted [7]. In practice, the series is
truncated and the accuracy depends on the number of terms retained [12].
In a beam assembly, the dynamic stiffness matrix [K(o)] of each beam depends on the circular

frequency o. This matrix includes stiffness, mass and damping contributions.

½KðoÞ�Xe ¼ Fe; ð1Þ

where Xe is the displacement vector at both ends and Fe the generalized force vector at the same
ends.
[K(o)] is determined by using beam characteristic functions. Coupling phenomena, as well as

warping [13], can be taken into account in the equations of motion. They raise the order of these
equations from 4 to 6 (or 8 or higher).
The solution of vibration problems concerning elements with simple known geometry, a matrix

formulation defining displacement–force relationship permits solution of an assembly of beams.
Fine meshing of the structure and decomposition of each beam into smaller elements is not
necessary. This constitutes one of the main differences between finite elements and continuous
elements. Fig. 1 represents the propulsion system cradle of a submarine in which the number of
nodes is limited to 100 [14].
To solve this problem in the same frequency range, the number of nodes adopted for finite

elements is several thousands.
The main difficulty is that the eigenvalue problem related to CE is non-linear [15] as opposed to

that of the FEM, which is linear relative to o2. However, this method is very efficient to study the
harmonic response of large structures.
This paper is devoted to beam assemblies. In the first part, the equations of motion for planar

and non-planar beams are presented. In the simple case where various motions (extention,
bending and torsion) are uncoupled, a close form expression of the dynamic stiffness matrix using
characteristic functions is presented. When coupling motions are taken into account, a close form
expression using characteristic functions becomes cumbersome, if not intractable. In these cases,
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an entirely numerical solution is proposed. This solution is not an approximation. For curved and
non-planar beam, curvilinear co-ordinates are particularly appropriate. When curvature and
tortuosity are constant along the middle line (helical beams), a restricted number of elements is
adopted and can be reduced to one element, whereas the FEM requires atleast 50 elements or
more for the same geometry.
The second part is devoted to numerical computation of frequency responses. Experimental

validation and comparison with FEM computations are also presented.

2. Continuous element formulations

2.1. Equilibrium equations and force–displacement relationship

Let Ls,t(u, f) be a differential operator applied to the displacement vector u and the internal
force vector f along the beam, Fig. 2.

sA½0; L�; t > 0;

Ls; tðu; fÞ ¼ qðs; tÞ;

fð0; tÞ ¼ �FAðtÞ;

fðL; tÞ ¼ FBðtÞ; ð2Þ
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Fig. 1. Propulsion system cradle.

Fig. 2. Beam element.
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where s is the curvilinear abscissa variable, t the time variable and q(s, t) the distributed loads
along the beam.
Eqs. (2) represents the formulation of the elementary problem in which the operator Ls,t is

classified into two categories: the equilibrium equations and force–displacement relationship. To
Eqs. (2), initial conditions have to be added.
For example, operator Ls, t(u, f) relative to a Timoshenko straight beam is of first order relative

to abscissa s and second order relative to time t. It is given by the following expression:

@UY

@s
�

kY

GS
FY � OZ ¼ 0;

@OZ

@s
�

MY

EIZ

¼ 0;

rS
@2UY

@t2
�
@FY

@s
¼ pY ðs; tÞ;

rI0
@2OZ

@t2
�

@MZ

@s
� FY ¼ mZðs; tÞ; ð3Þ

where UY is the vertical translation and OZ is the rotation of the section. S, kY, IZ and I0 are,
respectively, the cross-sectional area, the Timoshenko shear deflection constant, the area and
polar moments of inertia. E, G and r are, respectively, Young’s modulus, the Coulomb modulus
and the mass density. FY and MZ are the internal shearing force and bending moment, pY and mz

are the distributed external vertical force and external bending moment.
In the particular case of harmonic regimes, the solution of Eqs. (2) is possible by removing the time

variable t. This leads to a differential system where circular frequency o appears as a parameter.

sA½0; L�;

Ls; oðu; fÞ ¼ qoðsÞ;

foð0Þ ¼ � FA;

foðLÞ ¼FB: ð4Þ

Vector E(s)=[u(s), f(s)] is known as the state vector. Its components are the primary unknowns of
the problem and depend on circular frequency o.

2.2. Explicit continuous elements (ECE) and dynamic stiffness matrix

In the case of the general Timoshenko/Saint-Venant beam, the state vector has 12 components.
From Eqs. (4), it is always possible to extract the differential equation satisfied by each
component. In the more general case, these equations are 12th order ones.
In the case where the absence of coupling reduces the order of the equation of motion, explicit

displacement solutions are tractable.
The explicit solutions of the equations relative to displacement components, that is to say the

equations of motion, are obtained for the cases where the absence of coupling permits a reduction
in equation order: displacement vector u is then expressed with characteristic functions.

uðs; oÞ ¼ ½gðs; oÞ�cþ g0ðs; oÞ; ð5Þ
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where c is the vector whose components are 12 integration constants, [g(s, o)] :(6� 12) matrix
consisting of characteristic functions which are solutions of the homogeneous equations of motion
and g0(s, o) the particular solutions of the equations of motion.
Displacements at both end s=0, s=L give:

U ¼
uð0; oÞ

uðL; oÞ

 !
¼

UA

UB

 !
¼

½gð0; oÞ�

½gðL; oÞ�

 !
cþ

g0ð0; oÞ

g0ðL; oÞ

 !
: ð6Þ

Integration constants obtained from the inversion of Eq. (6) are replaced in Eq. (5).

c ¼
½gð0; oÞ�

½gðL; oÞ�

 !�1
UA � g0ð0; oÞ

UB � g0ðL; oÞ

 !
: ð7Þ

The displacement field along the beam is evaluated from the nodal displacement vector U=(UA,
UB)

T. This leads to the following solution:

uðs; oÞ ¼ ½gðs; oÞ�
½gð0; oÞ�

½gðL; oÞ�

 !�1
UA � g0ð0; oÞ

UB � g0ðL; oÞ

 !
þ g0ðs; oÞ: ð8Þ

Internal force unknowns f are deducted from the force–displacement relationship which are
extracted from Eqs. (4):

f ¼ ½A� 	 ½D�u; ð9Þ

where [D] is the differential operator and [A] the constitutive matrix built from the elastic
characteristics of the material.
The linearity of the operator [D] permits one to obtain the (6� 12) matrix [h(s, o)] and the six

components vector h0(s, o) connected to the unknown forces.

½hðs; oÞ� ¼ ½D�½gðs; oÞ�;

h0ðs; oÞ ¼ ½D�g0ðs; oÞ:

Then the internal force vector is

fðs; oÞ ¼ ½A�½hðs; oÞ�cþ ½A�h0ðs; oÞ; ð10Þ

and the nodal force vector is

FA

FB

 !
¼

�½A� ½hð0; oÞ�

½A� ½hðL; oÞ�

 !
cþ

�½A�h0ð0; oÞ

½A�h0ðL; oÞ

 !
: ð11Þ

Internal force fields along the beam are evaluated from the nodal displacement vector U=(UA,
UB)

T. This leads to the following solution

fðs; oÞ ¼ ½A�½hðs; oÞ�
½gð0; oÞ�

½gðL; oÞ�

 !�1
UA � g0ð0; oÞ

UB � g0ðL; oÞ

 !
þ ½A�h0ðs; oÞ: ð12Þ
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The dynamic stiffness matrix [K(o)] and the complementary force vector P(o) that is due to
distributed loads are evaluated from the following definition

FA

FB

 !
¼ ½KðoÞ�

UA

UB

 !
þ PðoÞ: ð13Þ

Using Eqs. (7) and (11)

FA

FB

 !
¼

�½A�½hð0; oÞ�

½A�½hðL; oÞ�

 !
½gð0; oÞ�

½gðL; oÞ�

 !�1
UA � g0ð0; oÞ

UB � g0ðL; oÞ

 !
þ

�½A�h0ð0; oÞ

½A�h0ðL; oÞ

 !

and then

½KðoÞ� ¼
�½A�½hð0; oÞ�

½A�½hðL; oÞ�

 !
½gð0; oÞ�

½gðL; oÞ�

 !�1

; ð14Þ

PðoÞ ¼
½A�½hð0; oÞ�

�½A�½hðL; oÞ�

 !
½gð0; oÞ�

½gðL; oÞ�

 !�1
g0ð0; oÞ

g0ðL; oÞ

 !
þ

�½A�h0ð0; oÞ

½A�h0ðL; oÞ

 !
: ð15Þ

2.3. Numerical continuous element (NCE) and dynamic transfer matrix

In many situations, couplings between displacement components (torsion, bending, extension
and cross-section warping) occur. This contributes to raise the degree of the differential equations
and inevitably, the search for closed form expressions of the dynamic responses becomes
intractable if not impossible.
This method is not based on discretization of differential equations. The solution is exact but

purely numerical as apposed to the close form solutions using characteristic functions which are
applicable only in the simple case where uncoupling of vibration modes is possible.

2.3.1. State vector and elementary dynamic transfer matrix

The main idea is to use a vector variable composed of as many components as necessary to
reduce the order of differential problem to one. In the case of a planar or non-planar
Timoshenko/Saint-Venant beam, it has been shown that the vector, composed with both
displacement and force components, satisfies first-order differential system relative to s, see
Eq. (3). This vector is called the state vector E:

EoðsÞ ¼ ðuðsÞ; fðsÞÞt: ð16Þ

The vector E depends on the curvilinear co-ordinate, s and on the circular frequency o indicated
by a subscript. u(s) and f(s) are displacement and internal force vectors, respectively. In the case of
harmonic regimes, the formulation of the elementary problem is written using this state vector

dEoðsÞ
ds

¼ ½DoðsÞ�EoðsÞ; ð17Þ

where [Do(s)] is the differential dynamic matrix.
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A dynamic transfer matrix is defined relating the state vector at the abscissa s to the input state
vector at the origin of a beam segment, see Fig. 3

EoðsÞ ¼ ½ToðsÞ�eEoð0Þ: ð18Þ

According to Eqs. (17) and (18), a first order differential equation relates the dynamic transfer
matrix and its first derivative to [Do(s)]

d½ToðsÞ�
ds

¼ ½DoðsÞ�½ToðsÞ�; ð19Þ

with [To(0)]=[I] where [I] is the identity matrix.
If the differential matrix is supposed to be independent of the abscissa s, one gets the following

first order differential equation

d½ToðsÞ�
ds

¼ ½Do�½ToðsÞ�: ð20Þ

The beams which satisfy this assumption are those whose section, material and curvature/
tortuosity radii are constant along the middle line. The most general case is the helical beam with
constant section.
Matrix exponentials are introduced as solution of Eq. (20) for transfer matrix.

½ToðsÞ� ¼ e½Do�s: ð21Þ

Exponential matrix is given by

e½X� ¼
XþN

i¼0

½X�i

i!
: ð22Þ

In the case where [D] is diagonalizable, the following decomposition is adopted

½Do�s ¼ ½Q�½L�½Q��1s; ð23Þ

where [Q] is the matrix whose columns are eigenvectors of [Do] and [L] the eigenvalues diagonal
matrix [Do].
Then expressions (21) and (22) allows one to obtain the following expression:

½ToðsÞ�s ¼ ½Q�e½L�s½Q��1; ð24Þ
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Fig. 3. State vector along the beam.
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with

e½L� ¼

el1 0

el2

&

0 eln

0
BBBB@

1
CCCCA: ð25Þ

If [Do] cannot be diagonalized, it is possible to envisage a solution by a method using canonical
Jordan form.
It is not possible to go further in the simplification of expression (23), [Do] being neither a

hcrmitian matrix nor a symmetrical one. Eigenvectors consequently are not orthogonal and the
inversion of [Qo] matrix is required.

2.3.2. Eigenvalues and eigenvectors of [Do]

The first step of the computation is the search for the eigenvalues. A QR, algorithm is used
which permits one to obtain a complex set of eigenvalues of a real or complex matrix. For each
operation a QR decomposition is effected by matrix multiplication

½Ak� ¼ ½Qk�½Rk�;

½Akþ1� ¼ ½Rk�½Qk�:

Successive operations lead to a triangular matrix whose diagonal elements are the required
eigenvalues. The sensitivity of the eigenvalues to round-off errors can be reduced if a balancing of
non-symmetric matrix is achieved beforehand.
The eigenvectors of [Do] can be evaluated by matrix deflation or subspace iteration method.

2.3.3. Elementary dynamic stiffness matrix [Ko]

The elementary dynamic transfer matrix is defined as

UB

fB

 !
¼ ½TðoÞ�

UA

fA

 !
; ð26Þ

that is to say

½TðoÞ� ¼ ½ToðLÞ�: ð27Þ

A and B being the ends of the element and the dynamic stiffness matrix is defined from

FA

FB

 !
¼

�fA

fB

 !
¼ ½KðoÞ�

UA

UB

 !
; ð28Þ

where FA, FB, UA, UB are external force vectors and generalized displacement vectors at both ends
A and B. Decomposing [To] into four blocks and writing boundary conditions, the classical form
of [Ko] is obtained

½KðoÞ� ¼
½T12ðoÞ��1½T11ðoÞ� �½T12ðoÞ��1

�½T12ðoÞ��T ½T22ðoÞ�½T11ðoÞ��1

 !
: ð29Þ
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2.4. Helical Timoshenko beam

The geometry of this beam is interesting first by its extensive use in industry, see Fig. 4. (t, n, b)
are the Frenet unit vectors, Y is the first direction of section inertia and r is the angle between
vector n and Y.
From the computational point of view, it deserves attention because its dynamic response can

be treated using a purely numerical method. This is due to the fact that curvature radius R of
beam, tortuosity curvature T and section S are constant.
The state vector for the numerical continuous element formulation has 12 components

(Expression (30))

EoðsÞ ¼ ðUr; Un; Ub; Ot; On; Ob; Ft; Fn; Fb; Mt; Mn; MbÞ: ð30Þ

The first three components concern displacement. The second group of three components is an
angular rotation. The third group of three components concerns force components. The fourth
group represents moment components. Non-dimensional variables are used,

%s ¼
s

R
; %U ¼

U

R
; %O ¼ O; %F ¼

FR2

EIY

; %M ¼
MR

EIY

;

where E is Young’s modulus and IY is the area moment of inertia with respect to Y-axis.
Differential dynamic transfer matrix [Do], which is defined from a first order differential

equation, is presented in Appendix A.
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2.5. Solution and post-processing

The harmonic response of a complete structure is studied in a given frequency range. For each
circular frequency, each elementary dynamic stiffness matrix is built and converted from local
reference to global reference, according to expression (31).

½ %KðoÞ� ¼ ½R�Te ½KðoÞ�½R�e; ð31Þ

where [R]e is the rotating matrix from a local reference to a global reference.
The assembling of all these stiffness matrices and the introduction of boundary condition are

operated to conduct to the global dynamic stiffness [K(o)]G.
This constitutes a linear system whose unknowns are displacements of the beam at its tips

(Eq. (32)):

FG þ PG ¼ ½KðoÞ�GUG; ð32Þ

where [K(o)]G is the global dynamic stiffness matrix.
Displacement and internal forces along the beams are evaluated from nodal solutions according

to Eqs. (8) and (12), in the case of explicit continuous element and, according to Eq. (18), in the
case of numerical ones.

2.6. Numerical instability for numerical continuous element

For numerical continuous elements, it will be shown that numerical instability may occur
particularly for the elementary theory. This instability occurs beyond a critical frequency that can
be predicted in advance.
Take a simple example: the Bernoulli–Euler beam for bending dynamic differential matrix is

easily evaluated;

½Do� ¼

0 1 0 0

0 0 0 1

�
rSL4o2

EIZ

0 0 0

0 0 �1 0

0
BBBBBB@

1
CCCCCCA
: ð33Þ

The associate state vector is

Eo ¼ ðUY ðsÞ; OZðsÞ; FY ðsÞ; MZðsÞÞ
T;

where the components are those defined previously, see Eq. (3).
Matrix (33) has four distinct non-zero eigenvalues,

l1 ¼ jmo; l2 ¼ �jmo; l3 ¼ mo; l4 ¼ �mo

with

mo ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffi
rSo2

EIZ

4

s
:

Matrix (33) is used to implement a numerical continuous element according to Section 2.3.
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The dynamic stiffness matrix (34) has a close form expression. It is used to implement an
explicit continuous element.

½Ko�e ¼
mo

ð1� cCÞ

m2
oðCs þ ScÞ mosS �m2

oðs þ SÞ moðC � cÞ

mosS ðCs � ScÞ moðc � CÞ ðS � sÞ

�m2
oðs þ SÞ moðC � cÞ m2

oðSc þ CsÞ �mosS

moðC � cÞ ðS � sÞ �mosS ðsC � ScÞ

0
BBB@

1
CCCA; ð34Þ

where C=cosh(mo), c=cos(mo), S=sinh(mo) and s=sin(mo).
Fig. 5 shows the flexural responses using ECE and NCE. Beyond 30 000Hz, there is a complete

loss of accuracy with NCE due to round-off errors.
The numerical values of hyperbolic functions C and S exceed 1015 in the transfer matrix.

Although exponential evolution is continuous, loss of information occurs when each term of the
dynamic transfer matrix necessitates, for its representation, a number exceeding 16 figures.
For the Bernoulli–Euler beam, the inversion of [T12(o)], in expression (29), necessitates the

presence of all the decimal figures.
When mo>38, the submatrix [T12(o)] becomes numerically

½T12ðoÞ�D
�m�3

o m�2
o

�m�2
o m�1

o

 !
emo

2
;

and then it is not possible to invert it.
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When 20omoo38, the inversion is theoretically possible but very hazardous from the
numerical point of view. The instability occurs.
This limit for mo gives rise to the critical frequency:

f ¼
400

2pL2

ffiffiffiffiffiffiffiffi
EIZ

rS

s
:

For the chosen example, it is situated at 30 000Hz.

3. Validation tests

Three tools are used: continuous elements, finite elements and physical experiments.

3.1. Numerical validation tests

3.1.1. Timoshenko beam theory

Although close form expressions can be evaluated for transfer and stiffness matrices [11], a
numerical continuous element is used to evaluate its performances.
Instability in the response curve does not occur because the hyperbolic terms in submatrix

[T12(o)] become trigonometric beyond a critical frequency. This submatrix is then numerically
invertible.
The upper bound of the frequency interval, for the same beam geometry as in Bernoulli–Euler

beam, is situated beyond 3� 109Hz. This value is the frequency limit of the numerical procedure
relating to a single element model. It does not presume the validity of the Timoshenko beam
theory at such frequencies.
Fig. 6 shows the bending response of a straight beam whose characteristics are:

L ¼ 0:7 m; S ¼ 3� 10�3 m2; IY ¼ 6:25� 10�7 m4; kY ¼ 1:2;

E ¼ 210 000MPa; G ¼ 80 769MPa; r ¼ 7800 kg=m3;

where L is the length of the beam and the other characteristics have been defined previously.
The results obtained with one numerical continuous element are compared with those obtained

with 16, 32 and 64 beam finite elements.
There is a convergence of results obtained with NCE and FE up to 60 000Hz. Beyond this limit,

there is a discrepancy which can be explained by the fact that the meshing in FE idealization is not
fine enough.

3.1.2. Timoshenko–Saint-Venant beam theory

Fig. 7 shows the state variables of the coupled system represented by the beam with an U-
shaped cross-section. If the shear centre C does not coincide with inertia centre G, coupling
phenomena between bending and torsion appear.
In Appendix B the dynamic differential matrix is presented. This matrix involves the position

(yC, zC) of the shear centre in the plane of the cross-section.
Fig. 8 shows an example of the response curve obtained by such a computation. A beam with

an L-shaped cross-section is submitted to a transverse force that gives rise to a coupled torsion/
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bending motion. The models compared are built, respectively, with one NCE and 80 shell finite
elements. The characteristics of the beam are:

L ¼ 1:003 m; S ¼ 1:71� 10�4 m; IY ¼ 2:32� 10�8 m4;

IZ ¼ 5:94� 10�9 m4; J ¼ 5:13� 10�10 m4; yc ¼ 0:01m;

zC ¼ 0 m; kY ¼ kZ ¼ 2:79;

E ¼ 208 560MPa; G ¼ 80 215MPa; r ¼ 7800 kg=m3;

where J is the torsional constant, the other characteristics have been defined previously.
A good similarity can be noticed between the two curves. Furthermore, the numerical

continuous element has given a stable response over a large frequency range. The numerical
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Fig. 7. Coupled bending/torsion state variables.
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frequency limit relating to a single element model has been evaluated to about 108Hz, far beyond
the frequency range of validity for this beam theory.

3.1.3. Timoshenko–Vlasov beam theory
The Vlasov torsion theory is more elaborated than Saint-Venant torsion theory. The presence

of a clamped end creates non-constant warping along the beam and normal stresses which are
particularly important for an open profile. This theory introduces the bimoment, that is, the
seventh generalized force directly proportional to the derivatives of the cross-section rotation in
its plane. Fig. 9 represents the cross-section of the clamped–free beam submitted to computation.
Its characteristics are:

L ¼ 0:7 m; a ¼ 3:3� 10�2 m; b ¼ 3� 10�2 m; e ¼ 3� 10�3 m;

E ¼ 210 000MPa; v ¼ 0:3; r ¼ 7800 kg=m3:

The state vector has 14 components. The equations of motion and the differential dynamic
matrix are evaluated [16]. The beam is submitted to a torsion moment at the free tip and the
displacement response is evaluated at this tip. Fig. 10 shows calculations using one NCE (Saint-
Venant and Vlasov) and 60 shell finite elements. It shows that the Saint-Venant’s formulation
gives rise rapidly to a degradation of results in response.
The numerical frequency limit relating to a single element model has been evaluated beyond

15 000Hz. Larger frequencies could be reached with models composed of 2 or more elements.
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3.1.4. Helical beam

Fig. 11 shows the helical spring tested. Its geometrical characteristics are:

S ¼ 8:825� 10�5 m2; kY ¼ kZ ¼ 1:11; IY ¼ IZ ¼ 6:197� 10�10 m4;

J ¼ I0 ¼ 1:239� 10�9 m4;

R ¼ 0:06973m; T ¼ 0:3591 m; L ¼ 1:72 m; j ¼ 0 rad:

These characteristics have been defined in Section 2.4.
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Fig. 10. Comparison Saint-Venant/Vlasov ECN and Shell FE: — 1 Vlasov NCE, y 1, Saint-Venant NCE, - - -, 120

shell FE.

Fig. 9. Cross-section of the element tested.
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The differential dynamic matrix is presented in Appendix A. Although many turns of coil are
present, one continuous element is only used. Fifty and 100 elements are adopted in the FE
models. In Fig. 12, excellent convergence is noticed for CE and FE with 100 elements.

3.1.5. Computation of damped structures
The dynamic stiffness matrix can include complex terms due to structural damping. No

hypothesis is made on the nature of damping. If constitutive equations of materials are known,
introduction of complex modulii (Young’s and Coulomb modulii as E*=E0(1+jdE),
G*=G0(1+jdG) is easy and the differential dynamic matrix [Do] is specified with complex
components. Furthermore, complex modulii may be frequency dependent. Fig. 13 shows an
example of such computation. It is the response of the helical beam presented in the previous
subsection for several values of the factor d=dE=dGg. The responses are evaluated for the
frequency range [250, 500Hz].

3.2. Physical experiments

The experimental set-up is used for structural modal analysis, see Fig. 14. The beams tested are
submitted to a shock for a free–free boundary condition. The response is treated by a spectral
analyzer.
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Fig. 11. Helical beam.
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Fig. 13. Dynamic response of a damped helical beam: —, d=0; - - -, d=0.01; -.-., d=0.02; y, d=0.05.

Fig. 12. Comparison 1 NCE/50 FE/100 FE: —, 1 NCE, y, 50 beam FE; - - -, 100 beam FE.
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3.2.1. Timoshenko’s bending beam

In Table 1, only 19 eigenvalues among the first 34 eigenvalues up to 150 00Hz are mentioned.
Various theories of bending are used in the CE computations. Compared to physical experiments,
the accuracy of a Timoshenko beam is about 0.5%. Less elaborated theories of bending
(Bernoulli, Rayleigh) give rise to larger discrepancies reaching 15%.

3.2.2. Helical Timoshenko’s beam
Table 2 shows some first 20 eigenvalues. Only one continuous element is used. The

discrepancies between computation and test results are 2.5% for the first 72 eigenvalues.
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Fig. 14. Experimental set-up.

Table 1

Comparison of first 19 eigenfrequencies

Mode Bernoulli Rayleigh Timoshenko Cowper Tests

1 31 31 31 31 31

2 87 87 87 87 87

3 170 170 170 170 170

4 281 281 281 281 281

5 420 (0.2%) 420 418 418 419

6 587 (0.5%) 586 583 583 584

7 782 (0.9%) 780 775 775 775

8 1004 (1%) 1001 993 993 994

9 1254 (1.4%) 1249 1237 1237 1237

10 1532 (1.5%) 1524 1507 (0.1%) 1507 1509

11 1838 (1.4%) 1827 1801 (0.6%) 1802 1812

12 2171 (2.1%) 2157 2121 (0.2%) 2122 2125

13 2532 (2.3%) 2513 2465 (0.4%) 2465 2475

14 2921 (2.9%) 2896 2832 (0.2%) 2833 2837

15 3338 (3.1%) 3305 3222 (0.5%) 3224 3237

16 3783 (3.6%) 3740 3635 (0.4%) 3637 3650

17 4255 (4.1%) 4202 4070 (0.4%) 4072 4087

18 4755 (4.5%) 4690 4526 (0.5%) 4529 4550

19 5283 (5.1%) 5203 5003 (0.4%) 5007 5025
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4. Concluding remarks

The continuous element method is very efficient to solve vibration problems of complex beam
assemblies. It is specially suited to the problem of harmonic response of large structures. The
number of elements required is reduced to a minimum and the obtained solution is theoretically
exact. The formulation based on close form expressions of the elementary problem is limited to
straight beam assemblies. The numerical continuous element method is an easy way to extend the
applications of the formulation, then the vibration problem concerning assemblies including more
complex beam geometries is soluble. Furthermore, the solutions obtained are capable of describing
various effects (inertia, shear, warping, couplings, etc.) which influence the structure responses.
Explicit or numerical formulations cover in principle an infinity of eigenvalues. In practice for a
given frequency interval, the structural response can be evaluated by a frequency scanning method.
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Appendix A

Helical beam differential dynamic matrix

½Do� ¼
½D11� ½D12�

½D21� ½D22�

 !
;
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Table 2

First 20 eigenfreguencies obtained by NCE and tests

Mode NCE Tests Mode NCE Tests

1 52 52 11 179 (3%) 185

2 54 (3.5%) 56 12 181 (3.5%) 188

3 64 (3%) 66 13 195 (2%) 199

4 95 (3%) 98 14 210 (4%) 219

5 103 103 15 268 (2.5%) 275

6 109 (2%) 111 16 268 (2.5%) 275

7 117 (1.5%) 119 17 369 (2.5%) 379

8 125 (3%) 129 18 422 (3.5%) 437

9 136 (3.5%) 141 19 496 (2.5%) 509

10 156 (3%) 161 20 570 (3.5%) 591
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½D11� ¼

0 1 0 0 0 0

�1 0
R

T
0 0 1

0 �
R

T
0 0 �1 0

0 0 0 0 1 0

0 0 0 �1 0
R

T

0 0 0 0 �
R

T
0

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

½D12� ¼

IY

SR2
0 0 0 0 0

0
EIY

GSR2
ðkYcos

2jþ kzsin
2jÞ

EIY

GSR2
ðkY � kZÞcosj sin j 0 0 0

0
EIY

GSR2
ðkY � kZÞcosj sin j

EIY

GSR2
ðkY sin

2jþ kzcos
2jÞ 0 0 0

0 0 0
EIY

GJ
0 0

0 0 0 0 cos2jþ
IY

IZ

sin2j cosjsinj 1�
IY

IZ

� 

0 0 0 0 cosj sin j 1�
IY

IZ

� 
sin2jþ

IY

IZ

cos2j

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

;

½D21� ¼

�
rSR4o2

EIY

0 0 0 0 0

0 �
rSR4o2

EIY

0 0 0 0

0 0 �
rSR4o2

EIY

0 0 0

0 0 0 �
rI0R

2o2

EIY

0 0

0 0 0 0 �
rR4o2

EIY

cos2jþ
IZ

IY

sin2j
� 

0

0 0 0 0 0 �
rR4o2

EIY

sin2jþ
IZ

IY

cos2j
� 

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

;

½D22� ¼

0 1 0 0 0 0

�1 0
R

T
0 0 0

0 �
R

T
0 0 0 0

0 0 0 0 1 0

0 0 1 �1 0
R

T

0 �1 0 0 �
R

T
0

2
6666666666666664

3
7777777777777775

:
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Appendix B

Coupled bending/torsion differential dynamic matrix for a straight beam

½Do� ¼

0 0 0 0 1
kY EIY

GSL2
0 0 0 0

0 0 0 �1 0 0
kY EIY

GSL2
0 0 0

0 0 0 0 0 0 0
EIY

GJ
0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0
IY

IZ

�
rSL4o2

EIY

0 �zC
rSL3o2

EIY

0 0 0 0 0 0 0

0 �
rSL2o2

EIY

yC
rSL

EIY

0 0 0 0 0 0 0

�zC

rSL3o2

EIY

yC

rSL3o2

EIY

�
rL2o2

EIY

ðI0 þ y2CS þ z2CSÞ 0 0 0 0 0 0 0

0 0 0 �
rL2o2

E
0 0 1 0 0 0

0 0 0 0
rL2IZo2

EIY

�1 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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